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INTRODUCTION 

For many n o a - l b a r  problems it is general ly  necessary t o  o b t a h  

. 

so lu t ions  by e i t h e r  njanecical or a p p r o x h t e  methodr. I n  a recent  paper ( 1) 
it was noted that t y p i c a l  examples of these problane a m  those involving 

laminar boundary l aye r  flows and non-linear heat conduction a8 invest igated 
by Biot 's  va r i a t iona l  method. 

mation i n  laminar boundary layer ana lys i s  was examined. 
paper, use of tho same transcendental  approximation in non-linear heat 
conduction is discussed. 

In t h a t  paper use of a transcendental  approxi- 
In the present 

. 

In  previous s tud ie s  of typ ica l  one-dimensional, t r ans i en t  heat con- 
duction problems with non-linear boundary conditions (2, 3) the  temperature 

d i s t r i b u t i o n  has been represented subject  t o  a two-fold approximation. 
F i r s t ,  t h e  boundary condition i n f i n i t e l y  d i s t a n t  from the  surface is brought 
t o  a f i n i t e  d i s tance  from t h e  surface, t h i s  d i s tance  being ca l l ed  t h e  pene- 
t r a t i o n  depth; then t h e  temperature is approximated by a polynomial i n  t h e  
region from t h e  surface to  t h e  penetration depth, being regarded as constant 

a t  greater depths, 
obtain quickly a t  least the asymptotic so lu t ions  f o r  sho r t  and f o r  long 
times. 
equal accuracy, s ince  t h e  polynomial p r o f i l e  used may be less s u i t e d  t o  
represent  t h e  t r u e  p r o f i l e  a t  one of t he  (asymptotic) times than a t  t h e  

other .  
p r o f i l e  shapes obtained f o r  each asymptotic case need not  be the  same. 
Further, it is known t h a t  the  ac tua l  p r o f i l e  must be some form of tranacen- 

den ta l  function, and a transcendental  approximation can have a closeness of 
i n d e f i n i t e l y  high order t o  t h e  exact so lu t ion ,  

For t h e  cases considered previously,  it is possible  t o  

However, it is not  clear t h a t  t h e  so lu t ions  w i l l  be roughly of 

The p r o f i l e  funct ion used here is adaptable t o  t h e  ex ten t  that t h e  

I n  t h i s  paper a particular example of a t r a n s i e n t  conduction problem 
w i t h  a non-linear boundary condition is considered, f o r  which other solu- 

t i o n s  have been obtained. 
conduction i n  a remi- inf in i te  slab with the  boundary condition t h a t  t he  

heat  flux a t  t h e  surface is proportional t o  the  n-th power of t h e  surface 
temperature and with t h e  i n i t i a l  condition that t h e  s l a b  temperature is 
unifonn, forming t h e  reference zero, i. a, t he  cero of an appropriate  
empir ical  temperature scale. 

of problems. 

r h n t  conduction due t o  unateady r ad ia t ion  in an enclo8ure. 

This example oons is t s  of unsteady one-dimensional 

Solut ions f o r  t h i s  farm of boundary condi t ion are usefu l  for a variety 

One p r a c t i c a l  problem f o r  which they have been u8ed is t ran-  
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NOTATION 

C 

D 
- E i (  -u) 

E . p  

F 

f 

gk 
Y 
I 
imerfc n 
J 
K 
k 
M 

Mm 
m 
n 
11 .. 
P 

Qi 

qi 

S 

T 

t 

U 

uO 
v 
V 

X ¶  Y, = 
pro n 

coef f ic ien t  

p r o f i l e  parameter, funct ion of n 
coef f ic ien t  

p r o f i l e  parametel-, funct ion of n 
coef f ic ien t  

spec i f i c  heat  

d i ss ipa t ion  funct ion;  also, a coe f f i c i en t  

exponential i n t e g r a l  

general  exponential  i n t e g r a l  

heat f lux a t  x = 0 

coef f ic ien t  
constants 
heat f l o w  f i e l d  ; i, heat flux f i e l d  
a spec i f ic  i n t e g r a l  

m-th repeated i n t e g r a l  of t h e  error funct ion 
coef f ic ien t  
coef f ic ien t  

thermal conduct ivi ty;  also, running index 

function of uo 
coef f ic ien ts  

running index 

exponent 
u n i t  noma1 vec tor  
running index 

thermal force 

i - t h  generalized coordinate;  ql, sur face  temperatun-?; 
q2, penetrat ion depth 

sur face  
a rb i t r a ry  constant  temperature 

time 

exp (a + bn) 
exp a 

a thermodynamic po ten t i a l  

volume 
space coordinates 
dimensionless temperature p r o f i l e  approximation 



P 
a 

T 

X 

rl 

coefficients 
gamma function 
Euler's constant 
an arbitrary small number 
dimensionless space variable 
general variable 
temperature , 

density 
scaling factor 
dimensionless time 
dimensionless penetration depth 
dimensionless surface temperature, x = 0 

4 
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Biot'a Variational Method for Transient Conduction 

A variational principle for analysis of heat conduction has been 
described extensively by Biot (4, 51, who has also given sane examples of 

its use. An alternative, complementary method for deriving the principle 
was described by Boley & Weinsr (6). In essence, it is supposed that one 
can consider a heat flow vector field e to exist within a body, such that 
the time-rate of change @ is the heat flux across an area normal to 8 .  
mom the First Law, in the absence of work, one has that 

cp8 = -div H - c 13 

In particular, if the heat flow field can be expressed as a function of 
n "generalized coordinates" qi (t) , so that 

then it is possible to write a variational principle in the f o m  

Qi 
av 

where 

and, common to the n equations C33 , 

V = h1I2)cp 8 2 dv 

c 

= J & .H2 dv. 

Cil 

c 53 

C61 

This variational principle is equivalent to the heat conduction equation 
in an isotropic medium. 
in space, it and the heat flow field are related simply. 
utilize the method, some particular form of temperature profile is assumed, 
and a sufficient number of generalized coordinates assigned to describe 
it. Froa eqn, [l] the heat flow field correrrponding to the ass& profile 

When the temperature field is one-dimensional 
In order to 
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can be determined, and subsequently t h e  d i s s ipa t ion  function D and t h e  

p o t e n t i a l  V. 

As an a l t e r n a t i v e  t o  determining t h e  n general ized coordinates  from 

eqn. C31, it is  possible  t o  determine one through use of a compatibi l i ty  

condition on the  surface hea t  f lux (e. g . ,  by forc ing  Ho for a semi- 
i n f i n i t e  body t o  s a t i s f y  exactly t h e  heat  f l u x  boundary condi t ion) ,  leaving 
( n  - 1) coordinates t o  be determined from t h e  v a r i a t i o n a l  p r inc ip l e .  

The Profi le  Function 

The funct ion for  p r o f i l e  approximation introduced by Richardson ( 7 )  is  

p ro  rl = exp C- exp (a + bn)] / exp C- exp a] C73 

and t h i s  funct ion s a t i s f i e s  t h e  condi t ions 

This  p r o f i l e  function is a two-parameter p r o f i l e ,  and i n  general  two inde- 

pendent equations are required i n  order  t o  determine t h e  re levant  parameters. 

The Di f f e ren t i a l  Equations for t h e  Prof i le  Function 

The equations found by Biot's method depend upon t h e  s p e c i f i c  tem- 

pera ture  p r o f i l e  which has been assumed. It is convenient t o  write 

i = x/q2, 
U = exF (a + bn), 
u = exp a, 
0 

and 
so t h a t  t h e  p r o f i l e  assumed is 

8 = q1 exp (-U) / exp (-u0). C81 

I t  is  also assumed t h a t  t h e  heat f lux  boundary condition F belongs to t h e  

class of funct ions 

n F = feon = f q1 . 
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and t ,  but it 1’ 92 It is convenient t o  form dimensionless groups for q 
is found t h a t  t h e  parameters of t h e  problem do not  provide enough quan t i t i e s  
and it is necessary t o  introduce an a r b i t r a r y  temperature or length (which 
subsequently cancels out i n  the  so lu t ions) .  

denoted by T ,  t h e  following dimensionless groups can be establ ished:  

If t h e  former is chosen and 

x = q2f Tn-’ /k 

lkcp 
2 2(n-1) 

T = t f  T 

The heat flow f i e l d  is given by 

so t h a t  by determining eqn. t31  for q1 it can be shown t h a t  

c121 

while t h e  sur face  flux compatibil i ty condition gives  t h a t  

These equations have t h e  same form as those obtained by Richardson ( 3 1 ,  

but t h e  coef f ic ien ts  differ because of t h e  d i f f e r e n t  assumed p r o f i l e .  
The coe f f i c i en t s  which a r i s e  here are 
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J = C - D  

K = 1 / D .  
] C17J 

I n  der iving eqn. C123, advantage is  taken of t h e  fact t h a t  B = A/2, which 
can be shown bymoting t h a t n  = ( I n  u - a ) /b ,  transforming t o  u as t h e  
var iab le  of in tegra t ion ,  and in tegra t ing  by pa r t s .  

a parabol ic  p ro f i l e ,  though with d i f f e r e n t  coe f f i c i en t s ,  it is t o  be 
expected t h a t  t h e  asymptotic so lu t ions  for shor t  and long times w i l l  
also have t h e  same form, but with d i f f e ren t  coe f f i c i en t s .  
indeed found t o  be so. The short-time so lu t ion  can be wr i t ten  

Since eqns. E121 and [131 have t h e  same form as those found using 

This is 

and t h e  long-time so lu t ion  is 

I 

i L19J 
It is t o  be noted t h a t  t h i s  so lu t ion  cannot be used near n = 1. 

Evaluation of Coeff ic ients  

The next s t e p  i n  completing t h e  so lu t ions  is t o  evaluate  t h e  
coe f f i c i en t s  A ,  J and K. 

of a and b. 

thereby completing the  solutions.  

These coe f f i c i en t s  can be obtained as funct-hlr 

F ina l ly  a c r i t e r ion  can be es tab l i shed  for obtaining a and b, 

3 It may be noted t h a t  Ab , Jb and K/b are each funct icns  of uo oniy,  

and therefore  of a only. 

and K/b can be obtained from tables of exponential  i n t e g r a l s  using 
s t ra ightforward manipulations. The i n t e g r a l  for  Ab cannot be evaluated 

d i r e c t l y ,  but t h e  i n t e g r a l  can be expanded i n  an i n f i n i t e  series which 

I t  can be seen from t h e i r  de f in i t i ons  t h a t  Zb 

3 
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use of 
of t h e  
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in tegra ted  term by term. 
values of uo roughly i n  the  range of 3.0 t o  8.0. 

argument t h e  exponential i n t e g r a l  can be wr i t t en  

It was found t h a t  t h e  so lu t ions  required 

For small values 

Ei(-u) = y +  ln(u) - u + (1/2!2)u2 - (1/3!3)u 3 + .... [20] 

This series converges, bu t  for values of u ? 1 t h e  terms i n i t i a l l y  in-  

crease i n  magnitude, making it necessary t o  take many terns t o  obta in  

accurate r e s u l t s .  For l a rge  values of u 

This second series is asymptotic, t h e  terms i n i t i a l l y  converging and then 

diverging. 
I t  can be seen t h a t  

exp (2uo) 
L 

b3 
I, say.  c221 

For values of uo > 4 t h e  asymptotic expansion 1211 was subs t i t u t ed ,  giving - 

a0 aD 
-k >' ( - l Ik  gk u du 

k= 3 

- 2u e 

' U  
0 

ea 
-k u exp (-2u) du, 

k=3 ' U 0 

where values of gk are g3 = 1, g4 = -2, g5 =5, g6 = -16, g7 = 31: g8 :: - 3 1 2 ,  

etc. 
Now, t h e  general  exponential i n t e g r a l  is defined ( 8 )  as 

E (u) = J  1 xeP exp (-xu)dx, 
P 

[ 241 
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so t h a t  t h e  t y p i c a l  i n t e g r a l  term of is 

-k l-k u exp (-2u)du = u Ek(2uo) 
0 

whence 

so t h a t  t h e  coe f f i c i en t  A could be evaluated as a series of general  exponen- 

t i a l  i n t e g r a l s  

c251 

I n  computation t h e  series was summed t o  t h e  smallezit term; i f  t h e  consequent 

maximum e r r o r  was considered too large, Euler ' s  transformation was appl ied ,  
and f u r t h e r  terms taken u n t i l  t h e  maximum error was reduced t o  a satisfac- 

t o r y  magnitude. 

Determination of Constants f o r  the Prof i le  Function 
The c o e f f i c i e n t s  A ,  J and K of t h e  d i f f e r e n t i a l  equations were determjned 

as funct ions of uo and b i n  t he  last  sec t ion .  

time and long-time so lu t ions  can be found by appl ica t ion  of t h e  heat f l u x  

boundary condi t ion,  eqn. C93 : 

The values of uo for shor t -  

D i f f e ren t i a t ion  of eqn. C8] gives 

7 i '  * .cFi.'= 'k q 'b u / q2, 1 0  

which leads  t o  

$n-l 
X / b uo = 1. 

Subs t i t u t ion  of t h e  so lu t ions  E191 gives 

b uo A K / J = M = 2(2 - n)/(3n - 5) .  



The lef t  hand s i d e  of eqn. E261 is a function of uo only,  but t h e  value of 

u corresponding t o  a s p e c i f i c  value of n cannot be extracted d i r e c t l y .  
Values of M were computed for  values of uo = 3.0 (1.0) 8 . 0  with use of 
t a b l e s  and the  asymptotic expansion, eqn. C211, and for  values of u 
by in tegra t ion  using eqn. C203. In  ca lcu la t ion  a t  uo = 4,  one of t h e  series 
used i n  determining A had t o  be taken t o  twenty-five terms t o  evaluate  the  

i n t e g r a l  t o  e igh t  s ign i f i can t  d i g i t s .  Checks were made by overlapping and 

use of a l t e r n a t i v e  series. 
n ,  it was found convenient and adequate t o  use l i n e a r  in te rpola t ion  between 

values of M 

correspond t o  less than + 0.001 M.  Once values of u have been found, values 

of a can be determined immediately. 

0 

< 4.0 
0 -  

I n  order t o  determine values  of uo fo r  spec i f i ed  

4 vs.  log  uo. It was estimated t h a t  in te rpola t ion  e r r o r s  would 

0 - 
The values of b remain t o  be found. 

For t h e  polynomial approximation of t h e  temperature d i s t r i b u t i o n  t h e  
With 92 penetrat ion depth is defined as t h e  point  where 8 = 0 ,  i. e. x = 

t h e  p r o f i l e  funct ion 0 + 0 as x + m and hence q2 must be defined d i f f e r e n t l y .  
I t  is convenient t o  put  x = q2 where n/ql = E, where 

small number. 

is an a r b i t r a r y ,  very 

From t h e  p r o f i l e  function it follows t h a t  

C271 -a b = l n ( 1  - e I n  E ) .  

It w a s  decided t o  use c = 0.01 here. 

of b depends upon t h e  value of 8 .  

can t  t o  compare d i r e c t l y  t h e  coe f f i c i en t s  of t h e  penetrat ion depth so lu t ions  

from use of polynomial and transcendental  p ro f i l e s .  

It must be emphasized t h a t  t h e  value 

With t h i s  convention, it is not s i g n i f i -  

Resul ts  and Accuracv of ComDutations 

Short-time so lu t ion  The values found fo r  t h e  short-time so lu t ion  
(which are independent of n) were uo = 2.95, 

l/i JI = 1.130 7 

x = 3.18 T 1/2 

z 

which can be compared with Richardson's ( . 3 )  parabol ic  a p > . ~ ~ i i ~ ~ . L ~ i i  

JI = 1.130 7 1'2- , x = 2.59 T 1/ 2 
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and with t h e  exact so lu t ion  

15'2 JI = 1 . 1 2 8 4 . ~  . 

It  can be se in  t h a t  t he  coef f ic ien t  for +/t1I2 using t h e  p r o f i l e  function 
d i f f e r s  from t h e  exact solut ion by about 0 . 2  per  cent and from the  parabol ic  
approximation by about 2.4 per cent .  

Long time so lu t ions  A se t  of long-time solutions was computed for  a 
range of n where the  computations did not become inord ina te ly  long. 
Table I values of a and b are  provided, and i n  Table I1 vs1i:zs of t he  surface 
temperature coefficients $/t 1'2(1-n) (parsbol ic  p r o f i l e ) ,  ~'J/T 1/ 2 ( 1-n ) 

(transcendental  p r o f i l e )  and penetration de2,th coe f f i c i zn t  ( transcendental  
profile) are l i s t e d ,  together  with the  percentage d i f fe rences  of t h e  sur face  

temperature coef f ic ien ts .  

In  

For t h e  sake of comparison, two temperature p r o f i l e s  have been p lo t t ed  
i n  Fig. 1. 

factors u so t h a t  both prof i les  have t h e  same s lope  a t  rl = 0 .  

seen t h a t  t h e  p r o f i l e  for t h e  short-time so lu t ion  has a samewhat d i f f e r e n t  
shape from t h a t  for  t h e  long-time so lu t ion  with n = 0 . 7 .  

intennediate  values of n fa l l  between those shown. 
Another comparison has been made i n  Fig. 2 for the  short-time solut ion.  

The scale of S l a b  depth rl has been adjusted by using seezing 
It can be 

Profiles f o r  

The ordinate  is of temperature, normalized such t h a t  t h e  temperature on the  
axis (which corresponds t o  the body surface) is always uni ty;  t h e  absc issa ,  
t h e  s l a b  depth, has been adjusted such t h a t  a l l  temperature p r o f i l e s  show. 

have a s lope of uni ty  a t  t h e  body surface. 
t h e  p r o f i l e  of t h e  ana ly t i c  solution of t h e  short-time solution; two o the r  

s o l i d  l i nes  represent  t h e  parabolic and t h e  simple exponential  approximations 

respect ively.  
here. 
p a r t s  can be shown without obscuring t h e  ana ly t i c  solut ion.  

demonstrates well t h a t  t h e  p ro f i l e  function used here is a c lose r  approxima- 

t i on  than are t h e  o the r s  c i ted.  

The middle s o l i d  l i n e  represents  

The dashed l i n e  represents  t h e  p r o f i l e  approximation used 
Since t h i s  l ies so close t o  (and rosses) t h e  ana ly t i c  so lu t ion ,  only 

This figui-? 

The computations using t h e  exponential  integrals w?re based upor. t h e  

tables of Pagurova ( 8 ) .  with values for  i n t e g r a l s  beyond the range sf the  
tables generated using r e l a t ions  given i n  t h e  same reference.  

for o ther  quantities described here  were made using t h e  handbook of 

Abramowich and Stcgun (9 ) ,  with checks being made i n  r e l evac t  references 

Computations 
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given therein.  The accuracy of t h e  computations va r i e s  with n i n  t he  long- 
time solut ions,  but it is believed t o  be not -88 than 0.1 per  cent  i n  any 
case. 

Analytic Solution for n = 1.0 

The ana ly t i c  solut ion f o r  n = 0, i. e. constant heat f lux,  is well 

known. 
i n i t i a l  condition described i n  the Introduction is s l i g h t l y  a l t e r ed  so t h a t  
t he  s l a b  temperature is uniform but  above the reference z&ro by an a r b i t r a r y  

amount. 

O(x, t )  = 0.  

temperature of t h e  8 temperature scale; t h e  aolut ion is proportional t o  it. 
The solut ion can ba wri t ten  

The problem can also have an analytic so lu t ion  a t  n = 1.0 if t h e  

Without t h i s  a l t e r a t i o n  the  so lu t ion  recovered is t h e  t r i v i a l  case 
The a r b i t r a r y  uniform temperature can be chosen as t h e  un i t  

with 2 
=/; 

2 xf 
T = - '  tf ' ==  

kc? 

(where f has been normalized w i t h  respect  t o  t h e  i n i t i a l  temperature). The 

function im erfcn is t h e  m-th repeated in t eg ra l  of t h e  e r r o r  function, for 
which usefu l  t ab l e s ,  recurrence r e l a t ions ,  expansions and so fo r th  exist. 
A t  small times, t h e  term f o r  m = 0 is daminant and t h i s  coincides wi th  the  

short-time so lu t ion  discussed previously. 

provides a s h i f t i n g  average of the repeated in t eg ra l s  of t he  e m r  function. 

Successive in t eg ra l s  have p ro f i l e  shapes which move from the cen t r a l  p r o f i l e  

of Fig. 2 towards the  simple exponential. 
here  for 0 c n < 1.0 have a t r e n d  i n  t h e  same di rec t ion .  

times, the  asymptotic behavior of im erfcn as m -* Q is impartant. 

can be determined from the  se r i e s  expandon 

For longer times, t h e  series 

The approximate p r o f i l e s  found 
For very long 

This 
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i n  which the  terms corresponding t o  p = mt2, m+4, m+6, . * .  are understood 
t o  be zero. 

repeated i n t e g r a l  of t h e  error function (im erfc 
As m tends t o  i n f i n i t y ,  it can be shown t h a t  t h e  normalized 

/im erfc 0 )  is given 
asymptotically 

Discussion 

It can be 

by a 

seen 

simple negative exponential function ofn . 

from Fig. 1 t h a t  t h e  so lu t ion  of t h e  problem does 

t a k e  advantage, so t o  speak, of t h e  f l e x i b i l i t y  of t h e  t ranscendental  
p ro f i l e  by finding t h a t  d i f fe ren t  shapes are appropriate t o  d i f f e r e n t  
conditions.  

assist i n  providing r e s u l t s  which are more accurate than with f ixed simple 

p ro f i l e s .  This hope is borne out c l e a r l y  i n  the  short-time so lu t ion ,  where 
t h e  accuracy of t h e  surface temperature coef f ic ien t  is improved by a ten- 

fo ld  order  of magnitude compared with t h e  simple polynomial and exponential 

p r o f i l e s  l i s t e d  i n  Table I of Lardner’s paper ( 2 ) .  It is also demonstrated 
by Fig. 2. 

This adaptive feature of t h e  transcendental  p r o f i l e  should 

For 0 c n < 1.0 no exact solut ions exis t  with which t h e  long-time 

so lu t ions  can be compared. 
as n approaches uni ty .  

t i a l  integrals beyond t h e  range of ava i lab le  t ab le s ,  and p a r t l y  t o  t h e  
behavior of t h e  p r o f i l e  function. 

a e s sen t i a l ly  spec i f i e s  the shape of t h e  p r o f i l e ,  while t h e  parameter b 
spec i f i e s  t he  extent  of the  prof i le .  Thus, two p r o f i l e s  drawn with t h e  

The ca lcu la t ions  become increasingly d i f f i c u l t  
This is due p a r t l y  t o  the  need t o  generate exponen- 

In the  p r o f i l e  function t h e  parameter 

same values of a and d i f f e ren t  values of b have t h e  same Ehape, but not 
v i ce  versa.  

of p r o s  , t h i s  l i m i t  is approached rapidly.  
is c lose  to i ts  l i m i t .  This means t h a t  i f  an attempt is made t o  f i t  t he  

p r o f i l e  function t o  a function which is c lose  t o  t h e  simple expc:nent.ktl, 

t h e  determination of a 

produce small changes i n  t h e  p ro f i l e  shape. 

t o  obtain values of a t o  a specif ied number of s ign i f i can t  d i g i t s .  

As a -+ QD, p r o n  + exp [- (b exp a)n 1. Over the  major range 

Even with a = 5.0,  p ron  

becomes extremely insens i t ive ;  l a rge  changes .i.n A 

It is increasingly d i f f i c u l t  

It is noteworthy t h a t  t h e  difference between the  surface temperature 

coe f f i c i en t s  l i s t e d  i n  Table I1 increases  smoothly from t h e  value of 2.4% 

a t  n = 0 t o  12% a t  n = 0.73, t h e  difference increasing roughly exponen- 

t i a l l y  with n. 

s u f f i c i e n t l y  la rge  to be s igni f icant  i n  appl icat ions.  

The difference between surface temperature coe f f i c i en t s  is 

These differences occur because the  transcendental  p r o f i l e  changes its 
shape with n ,  which t h e  parabolic p r o f i l e  cannot do. It  is very probable 
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t h a t  t he  so lu t ions  with t h e  transcendental p r o f i l e  are more accurate ,  but 

at  present t h i s  cannot be demonstrated d i r ec t ly .  However, it is possible  
t o  make comparisons with t h e  ana ly t ica l  so lu t ions  for n t 0 and n = 1.0 

and show t h a t  t h e  temperature profile shape generated here for 0 < n < 1.0 

var ies  smoothly between t h e  analyt ic  l i m i t s .  
t h e  r e s u l t s  upon which a comparison can be based is t h e  parameter a, which 

determines the  shape of t h e  prof i le .  
long-time asymptotic behavior of the  ana ly t i c  so lu t ion  for n = 1.0 is 
t h a t  t h e  p r o f i l e  becomes a simple exponential; i n  approximating t h i s  shape 

a becomes la rge .  

so t h a t  i n  t h i s  instance it i s  also t h e  long-time so lu t ion .  

of a for long-time so lu t ions  i n  t he  range 0 c n c 1.0 are shown i n  Fig. 3. 

In  t h i s  it can be seen t h a t  the values found here f i t  w e l l  between t h e  

ana ly t i c  limits. 

polynanials. 
presented here are considerably more accurate than t h e  corresponding 

so lu t ions  ava i lab le  previously. 

The s igni f icant  feature of 

I t  has been noted above t h a t  t h e  

For n = 0 ,  t h e  shortAtime so lu t ion  is va l id  a t  a l l  times, 
The values 

This feature  is absent i n  a l l  f ixed p r o f i l e s ,  such as 
The comparison provides conducive evidence t h a t  t h e  solut ions 

WLL \wLJ 
surrmrary 
(1) Biot's va r i a t iona l  method is applied t o  a problem of t r ans i en t  heat 

conduction i n  a semi-infinite s l a b  subject t o  a non-linear boundary 

condition. 

(2)  A two-parameter transcendental approximation is used f o r  t h e  t e m -  

perature  p ro f i l e .  This approximation has the  advantage t b a t  its 

shape is not  f ixed,  so that  t h e  p r o f i l e  determined for each case 
considered can have t h e  shape most appropriate  t o  it. 

(3) Computations f o r  asymptotic short-time and long-time so lu t ions  

u t i l i z i n g  t h e  general  exponential i n t e g r a l  are described, and two 
exact so lu t ions  are mentioned f o r  cases which bound t h e  examples 

computed. 

(4) Comparison of t h e  var ia t iona l  so lu t ion  using t h e  transcendental  

approximation with the  exact so lu t ion  for t h e  l imi t ing  case of constant 

heat f lux  demonstrates an e r r o r  of less than 0 . 2  per cent i n  the  

surface temperature coeff ic ient  and very c lose  representat ion of the  

t r u e  temperature p r o f i l e .  
improvement over solutions obtained previously with other  p r o f i l e  

approximations. 

This corresponds t o  a very considerable 
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(5) Comparison of the variational solution for other examples shows 
that the computed profile shapes have a uniform variation which is in 
the correct direction to merge with the limiting case of surface heat 
flux directly proportional to surface temperature. 

(6) It is concluded that the solutions obtained here using the tran- 
scendental approximation are considerably more accurate than those 
previously available. 
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Table I 

Long time asymptotic solutions 

n 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.73 

a 

1.13287 

1.21696 

1.31709 

1.43553 

1.57704 

1.75592 

1.98445 

2.06623 

b 

0.90959 

0.86023 

0.80370 

0.73998 

0.66855 

0.58528 

0.49042 

0.45951 
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Table I1 

~ 

Surface temperature coefficients Penetration depth Difference in 
,,,/Tl/2(1-n) X / P 2  surf ace tempera- 

parabolic 

profile 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.73 

1.1347 

1.0996 

1.0453 

0.96170 

0.83340 

0.64006 

0.37095 

0.28085 

transcendental 

. profile 

1.053 

1.0658 

1,0064 

0,91769 

0.78593 

0.59309 

0.33493 

0.25068 

transcendental 

profile 

3.09136 

3.05915 

3. G1486 

2.96901 

2.92637 

2.76203 

2.57070 

2.49858 

ture coefficients 

(per cent 1 

2.7 

3.2 

3.9 

4.8 

6.0 

7.9 

10.7 

12.0 

I I I I 
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Figure Captions 

Fig. 1 Comparison of t h e  shapes of temperature p r o f i l e s .  
have been drawn with d i f f e ren t  scale factors t o  make t h e  i n i t i a l  

s lopes iden t i ca l .  

The p r o f i l e s  

Fig, 2 Comparison of t h e  exact temperature p r o f i l e  for  t h e  sho r t  time 

so lu t ions  with various approximations. 
used here  (dashed curve) g ives  a very c lose  approximation t o  t h e  
exact  p r o f i l e .  

The approximation funct ion 

Fig. 3 Comparison of  t h e  p r o f i l e  shape parameter a for  t h e  long time 

so lu t ions  as a function of n. A t  n = 1 t h e  exact so lu t ion  

corresponds t o  a + 0 0 ,  but even log a = 0.70 g ives  a very c lose  

approximation. 
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